
!1

Surviving in a world of change	

Towards evolvable and self-adaptive service-oriented systems  

!
ICSOC 2013

Carlo Ghezzi 	

Politecnico di Milano	

Deep-SE Group @ DEIB

Talk’s roadmap

• Understanding change	

• Understanding evolution and adaptation	

• How can we detect change?	

• How can we detect the need to evolve/adapt?	

• How can we react to support evolution/adaptation?	

• Lessons learned beyond SASs

�2

The root of the problems:
endemic change

!3

The global picture:
	

 the machine and the world (Jackson/Zave)

�4

Goals	

Requirement

Domain	

properties,	

assumptions

Specification

World (the environment) Machine

Shared 	

phenomena

Domain properties and assumptions

• Both refer to problem world phenomena	

• Properties hold regardless of any software-to-be 	

- if a positive net force is applied in one direction then the

body accelerates in that direction 	

- (if plane has touched down then wheels turn)	

• Assumptions may be violated	

- submission rate of user requests does not exceed XXX/sec	

- temperature is in the range -40 +40 Celsius 	

- librarians register return of books when users bring borrowed
books back

�5

Domain assumptions

!6

“Domain assumptions bridge the
gap between requirements and
specifications” 	

(M. Jackson & P. Zave)

May concern	

• usage profiles	

• users’ responsiveness	

• remote servers response time	

• network latency	

• sensors/actuators behaviors	

• . . .

Dependability arguments

• Assume you have a formal representation for	

– R = requirements	

– S = specification	

– D = Dp + Da domain properties and assumptions	

!

	

 if S and D are both satisfied and consistent, it is
necessary to prove	

– S, D |= R

!7

Change

• Requirements change	

• Environment changes 	

!

• Change is often a manifestation of uncertainty	

• Change asks for evolution (of the machine)

�8

Changes may cause evolution

• Changes are exogenous phenomena
that may concern	

- R 	

- D (actually, Da)	

• Changes likely break the dependability argument	

• Evolution (of the machine) is a consequence of change	

‣ we need to change S (and hence the implementation)

to continue to satisfy the dependability argument

!9

S, D |= R

Evolution and adaptation

Adaptation is a special case of evolution due to changes
in domain assumptions, Da	

• an increasingly relevant phenomenon, often due to
uncertainty	

‣ cyber-physical systems	

- interaction with the physical environment	

‣ user-intensive systems 	

- changes in usage profile	

‣ cloud/service infrastructure	

- platform volatility	

!10

Our focus here

On-line vs off-line evolution (type vs instance)
vs self-adaptive systems

• Traditionally, response to change is performed off-line
by engineers (aka software maintenance)	

• More and more often systems are required to be
continuously running	

• This asks for on-line evolution, i.e. applying changes to
the machine as the system is running and providing
service	

• The special case of self-adaptive systems	

- (instance-level) self-managed on-line adaptation

!11

Self-adaptive system (SaS)

• D decomposed into Df and Dc 	

– Df is the fixed/stable part	

– Dc is the changeable part	

!

• A SaS should	

- detect changes to Dc 	

- modify itself (the machine --- S, and the
implementation) to keep satisfying the dependability
argument, if necessary

!12

S, D |= R

Paradigm shift

• SaSs ask for a paradigm shift, which involves both
development time (DT) and run time (RT)	

• The boundary between DT and RT fades 	

• Reasoning and reacting capabilities must enrich the RT

environment	

- detect change	

- reason about themselves and the possible

consequences of change	

- react to change	

!13

Models+verification@runtime

• To detect change, we need to monitor the
environment	

• The changes must be retrofitted to models of the
machine+environment that support reasoning
about the dependability argument (a learning step) 	

• The updated models must be verified to check for
violations to the dependability argument	

• In case of a violation, a self-adaptation must be
triggered	

!14

Our approach in a nutshell

!15

Reqs

Implementation Monitoring

Execution

Reasoning

Development time

Run time

Env

Self-adaptation

Self-adaptation

E1

0

Specification
(machine model)

Environment	

model

 
Zooming in

!16

• I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, "Model Evolution by Run-Time Parameter
Adaptation”, ICSE 2009	

• C. Ghezzi, G. Tamburrelli, "Reasoning on Non Functional Requirements for Integrated Services”,
RE 2009	

• I. Epifani, C. Ghezzi, G. Tamburrelli, "Change-Point Detection for Black-Box Services”, FSE 2010	

• A. Filieri, C. Ghezzi, G. Tamburrelli, " A formal approach to adaptive software: continuous

assurance of non-functional requirements", Formal Aspects of Computing, 24, 2, March 2012.	

Zooming in
• Focus on non-functional requirements	

– reliability, performance, energy consumption, cost, …	

• Quantitatively stated in probabilistic terms	

• Dc decomposed into Du , Ds 	

– Du = usage profile	

– Ds = S1 ∧ ∧ Sn Si assumption on i-th service

!17

User

Integrated Service

Workflow

W

Service

S
1

<uses>

Service

S
2

<uses>

Service

S
n

<uses>

....

?

? ?
?

Models

• Different models provide different viewpoints from which
a system can be analyzed	

• Focus on non-functional properties and quantitative ways
to deal with uncertainty	

• Use of Markov models	

– DTMCs for reliability	

– Reward DTMCs for energy/cost/performance..	

• Use of probabilistic model checking for verification that a
model satisfies a given property	

– Properties written in PCTL

!18

An example

!19

3 probabilistic requirements:	

R1: “Probability of success is > 0.8”	

R2: “Probability of a ExpShipping failure for a user recognized as
	

 ReturningCustomer < 0.035”	

R3: “Probability of an authentication failure is less then < 0.06”

Login

Search

Buy

[buy more]

NrmShipping

ExpShipping

[proceed]

[normal]

CheckOut

Logout

[express]

Returning customers	

vs	

new customers

Assumptions

!20

User profile domain knowledge

RC
RC

RC
NC

NC

External service assumptions (reliability)

DTMC model

!21

Property check via model checking	

R1: “Probability of success is > 0.8”	

R2: “Probability of a ExpShipping failure for a user recognized as
	

 ReturningCustomer < 0.035”	

R3: “Probability of an authentication failure is less then < 0.06”

 0.84

0.056
0.031

5

12

Logged

9

Buy

6

Search

1

Returning

3

NewCustomer

7

Buy

4

Search

11

10

ExpShipping

12

14

Logout

16

Success

5 1

FailedLg

8

FailedChk

15 1

FailedNrmSh

13 1

FailedExpSh

1

0

Login

0.97

0.03
0.65

0.35

1

1

0.2
0.5 0.05

0.6

NrmShipping

0.030.95

0.1 0.97

0.95

0.9

1

0.15

1

0.3

0.05

CheckOut

0.25

What happens at run time?

• Actual environment behavior is monitored	

• Model updated by using a Bayesian approach to estimate

DTMC matrix (posterior) given run time traces and prior
transitions	

• Boils down to the following updating rule

!22

A-priori Knowledge A-posteriori Knowledge

Model update and failure prediction

• Model checking applied to after each update	

• Model checking may predict requirements violations	

• ... and trigger self-adaptations before violations manifest

themselves

!23

In our example

!24

R2: “Probability of an ExpShipping failure for a user recognized as
	

 ReturningCustomer < 0.035”

12

Logged

9

Buy

6

Search

1

Returning

3

NewCustomer

7

Buy

4

Search

11

10

ExpShipping

12

14

Logout

16

Success

5 1

FailedLg

8

FailedChk

15 1

FailedNrmSh

13 1

FailedExpSh

1

0

Login

0.97

0.03
0.65

0.35

1

1

0.2
0.5 0.05

0.6

NrmShipping

0.030.95

0.1 0.97

0.95

0.9

1

0.15

1

0.3

0.05

CheckOut

0.25

0.067

Requirement
violated!

Even if no returning
customers have been

observed

!25

The problem

• Verification subject to (application-dependent) hard
real-time requirements	

• Running conventional model checking tools after any
change impractical in most realistic cases	

• But changes are often local, they do not disrupt the
entire specification!

• Can they be handled in an incremental fashion?	

• This requires revisiting model checking algorithms!

Incrementality by parameterization

• Requires anticipation of changing parameters	

• The model is partly numeric and partly symbolic	

• Evaluation of the verification condition requires

partial evaluation (mixed numerical/symbolic
processing)	

• Result is a formula (polynomial for reachability on
DTMCs)	

• Evaluation at run time substitutes actual values to
symbolic parameters and is very efficient	

!26

Working m
om paradigm

Cook fir
st

Warm
-up la

ter

Working mom paradigm

!27

R
un

-T
im

e	

(o

nl
in

e)
D

es
ig

n-
T

im
e	

(o
ffl

in
e) Partial

evaluation

E1

0

Parameter	

values

Analyzable properties: reliability, costs (e.g., energy consumption)

[ICSE 2011] A. Filieri, C. Ghezzi, G. Tamburrelli “ Run-time efficient probabilistic model checking”	

[FormSERA 2012] A. Filieri, C. Ghezzi, "Further steps towards efficient runtime verification:
Handling probabilistic cost models"	

An example

!28

r = 0.85− 0.85 ⋅ x + 0.15 ⋅ z− 0.15 ⋅ x ⋅ z− y ⋅ x
0.85+ 0.15 ⋅ z

r = Pr(◊ s = 5)> r

!29

The WM approach

• Assumes that the Markov model contains absorbing
states, and that they are reachable	

• Works by symbolic/numeric matrix manipulation	

• All of (R) PCTL covered	

• Expensive design-time partial evaluation, fast run-

time verification	

- symbolic matrix multiplications, but very sparse

and normally only few variables

!30

Run-time verification

Matlab
Prism
MRMC
WM

T
im

e
(u

s)

103

104

105

106

Model size (# states)
50 100 150 200 250 300 350 400 450 500

!31

Further advantage of WM

• Because reachability properties can be expressed via
polynomial functions, it is also possible to compute
their (partial) derivative and perform sensitivity
analysis	

- Which parameters affect most the global quality in
the current operation point?	

• Similar approach can deal also with rewards	

- Energy consumption, Average Execution time,

Outsourcing cost, CPU time, Bandwidth

The rest of the story

• After you detect the need for an adaptation, how do
you react?	

• You need to perform a dynamic update	

• This means disconnecting components and ensuring a

correct + safe update	

• … but this is subject for another talk

!32

What did we learn?	

!

How/where do we proceed
from here?

!33

Run-time management

• The run-time environment for self-adaptive software should
not just run applications	

- it should support introspection and reaction	

‣ on the application’s requirements	

‣ its behaviour	

‣ the environment’s behavior	

• Models and continuous verification are essential for
introspection and reaction	

• But because models change, verification must be efficient	

✓ constrained by real-time requirements	

• This is agility taken to extremes

!34

Beyond self-adaptation

• Lessons learned are far reaching	

- Agile (explorative, incremental) development may

become verification-driven by supporting
incremental modelling and verification 	

- Agility and formal methods may be reconciled
rather than being antagonistic	

• Vision	

- Towards verification-driven development as

complementary to today’s test-driven
development

!35

Key feature: incrementality

Incremental verification
Given a system (model) S, and a set of properties P met by S 	

Change = new pair S’, P’ where S’= S + ∆S and P’= P + ∆P	

!

Let ∏ be the proof of S against P	

The proof ∏’ of P’ against S’ can be done by just performing a
proof increment ∆∏ such that ∏’ = ∏ + ∆∏ 	

!

Expectations: 	

	

 ∆∏ easy and efficient to perform 	

	

 ∆∏ helps designers reason about change

!36

A long way to go, but possible

• Revisit development models and verification
procedures to make them incremental	

• Make model-driven development practical	

• Package above in IDEs

!37

�38

Acknowledgements
• The work discussed here has been mostly developed thanks to a

funding from the European Research Council (Advanced Grant
IDEAS-ERC, Project 227977---SMScom)	

• ...and thanks to

!39

Thanks for your
attention!

!

!

Questions?

